Cell spreading and the regulation of ornithine decarboxylase.

نویسندگان

  • R F Morrison
  • E R Seidel
چکیده

The aim of this study was to investigate the effect of cell spreading on the induction of ornithine decarboxylase and the rate of putrescine uptake in anchorage-dependent and anchorage-independent cells. Plating non-transformed IEC-6 epithelial cells at high versus low cell density restricted cell spreading from 900 microns 2 to approximately 140 microns 2, blunted the transient induction of ornithine decarboxylase activity from 202 to 32 pmol 14CO2/mg protein per hour and reduced the rate of [14C] putrescine uptake from 46 to 23 pmol/10(5) cells per hour. The mean spreading area of the cell population was controlled by coating tissue culture dishes with the nonadhesive polymer, polyHEMA. Ornithine decarboxylase activity and putrescine uptake correlated with cell spreading with minimal spreading (263 microns 2) corresponding to an 83% decrease in ornithine decarboxylase activity and 51% decrease in the rate of putrescine uptake. Adding the RGD peptide, Gly-Arg-Gly-Glu-Ser-Pro to the medium of sparsely plated cells resulted in rapid reductions in cell spreading concomitant with dose-dependent decreases in ornithine decarboxylase activity and putrescine uptake. Finally, minimizing cell spreading by depriving cells of substratum contact completely abolished serum-induced increases in ornithine decarboxylase and reduced the rate of putrescine uptake by 47%. In contrast to IEC-6 cells, ornithine decarboxylase of neoplastic HTC-116 cells was constitutively expressed with basal and stimulated activity (193 and 982 pmol 14CO2/mg protein per hour, respectively) completely independent of cell adhesion. Putrescine uptake, however, was abolished in the absence of cell adhesion. These data suggest that the induction of ornithine decarboxylase activity and the rate of putrescine uptake correlate with spreading of anchorage-dependent IEC-6 cells and that ornithine decarboxylase activity but not putrescine uptake, appears to be independent of spreading of neoplastic HTC-116 cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stereo-Specific Transcript Regulation of the Polyamine Biosynthesis Genes by Enantiomers of Ornithine in Tobacco Cell Culture

Background: Ornithine (Orn) plays an essential role in the metabolism of plant cells through incorporation in polyamines biosynthesis, the urea cycle and nitrogen metabolism. Physiological response of the plant cells to its two enantiomers have not been widely investigated yet.Objectives: This study aimed to evaluate effect of ornithine enantiomers on exp...

متن کامل

Post-transcriptional regulation of ornithine decarboxylase in Xenopus laevis oocytes.

The level at which ornithine decarboxylase expression is regulated in growing oocytes has been investigated. Immunoprecipitation of the in vivo labelled proteins showed that ornithine decarboxylase accumulated less rapidly in stage IV oocytes than in previtellogenic stage I + II oocytes. Quantitative Northern analysis showed that ornithine decarboxylase mRNA is abundant in oocytes (about 8 x 10...

متن کامل

Studies on the role of protein synthesis and of sodium on the regulation of ornithine decarboxylase activity.

The minimum requirements for eliciting or enhancing ornithine decarboxylase activity (EC. 4.1.1.17); L-ornithine carboxylase) in neuroblastoma cells incubated in salts-glucose solutions have been investigated. These incubation conditions permit the study of changes in ornithine decarboxylase activity independently of the growth-associated reactions that occur in cell culture media (Chen, K.Y. a...

متن کامل

Independent regulation of ornithine decarboxylase and S-adenosylmethionine decarboxylase in methylthioadenosine phosphorylase-deficient malignant murine lymphoblasts.

The control of polyamine synthesis in neoplastic cells is complex and incompletely understood. Using murine lymphoma cells deficient in methylthioadenosine (MTA) phosphorylase, we have analyzed the role of MTA in the regulation of ornithine decarboxylase and S-adenosylmethionine (SAM) decarboxylase, the two rate-limiting enzymes in the polyamine-biosynthetic pathway. The addition of MTA to the ...

متن کامل

Antizyme inhibitor: a defective ornithine decarboxylase or a physiological regulator of polyamine biosynthesis and cellular proliferation.

ODC (ornithine decarboxylase) is a central regulator of cellular polyamine synthesis. ODC is a highly regulated enzyme stimulated by a variety of growth-promoting stimuli. ODC overexpression leads to cellular transformation. Cellular ODC levels are determined at transcriptional and translational levels and by regulation of its degradation. Here we review the mechanism of ODC degradation with pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 108 ( Pt 12)  شماره 

صفحات  -

تاریخ انتشار 1995